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ABSTRACT

This paper shows that partial differential equations may
be a possible area of application of mathematical programming.
The solution of Lapiace's equation with Neumann's condition is
shown to be a minimum cost network flow problem with cost pro-
portional to the arc flow. An algorithm of solving minimum

quadratic cost network flow is given.



I. Introductior:

The purpcse of this parer 1s te present a new numerical
method for sc.ving Laviace's ecration with Neumann's condition
prescribed cn the tcuriarv. This method uges the idea in the
theory of network t'cws whicn 1 a branch ¢f mathematical program-
ming asua.ily ccrsidered to h:z unrelated to the subject of partial
differential eguza*icne. For s rapl.city cf exposit:on we sha!’ dis-
c2868 the case in two dimensicns  Thne gencralizaticn tr three dimen-
sions 18 obvicus

Consider a simply-c-nnected domain G 1in the plane whose
bcundary I is a simple clecsed curve We are interested in find-
ing the soluticn of
’ 2 . . .

(n vV ¢ : in 4
¢ ¢

with as prescribed or I , where . )
! on P € on is the normal deriva-

tive of ¢ cconsicer:=dto be positive if ¢ decreases its va.iue
acrces the b-undary trcmr the curside regicr to G . In order to
have a uniaue s>:uticn, 1* i8 necessary and sutficient tc prescribe
o4 on I' such that the .:ne integra:
on :
0% .

2 — ds = (
(2) Pa

r

This prob.em arices /o™ many probieme of mathematical
physics; we shaiui. only give the physizal interpretation from the point
of view of fluid mechanics We ccnsider this prcblem as that of in-
compressible irrotationa’ flow and thus y$ 1is the velocity of the

flow where %2 on I' i3 instux or outflux of the liquid across the



boundary where /1) :s the eqcation of continuity. Since there is no
source or sirk inside C , {2) expresses the condition that the
total inflow muast equa. the total outfiow. We shall call the parts of
. 3¢ . .

I' for which 5, Aare positive, 1ine sources, and the part of T

: ad . ‘. .
for which % 8re neganve, lne sinks.

The usual numerical mehod is to repiace differentiai equation
(1) by differerce eccation with unifor-n or ron-uniform grids, and
then calculate the value of the function at the discrete points where
the spacirg betweenr 2rid .ines 1s determined by the degree of accu-
racy desired.

Yor a non-unifcrm rectangular grid {see Fig.l) , the differ-

ence ejuat'cn tcr the Lapiace's 2quation at point P  becomes
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. e~ %p .
Denoting pr =z BE(hE 7 H\Tv’ , etc., we can rewrite (3) as

il fep ~ fpw * fnp " fps = ©

If we consider the equation at the point S , using this notation, we

also have

(5) (= Pt
PS Bs(hs + h‘l?)
Since hN # hT in general, the symbol fPS etc., seems to be

not uniquely defined. We shall first assume that all h's are equal
and then discuss the non-uniform grid case later. For the case, all
h's are equal, and the fij are just the differences between func-
tions at points divided by th and are uniquely defined. Equation
(4) suggests a strong analogy between the difference equation and the
physical model of water flowing in pipes.

We shall now consider a physical model for the grid system to
be a network. The boundary value problem of a network has already
been discussed in Duffin [ 8] and Birckhoff and Diaz [2]. As usually
done in the theory of network flows (see the most complete descrip-
tion by Ford and Fulkerson [ 9] ) we consider a network which con-
sists of nodes Ni and arcs Bij connecting Ni and Nj
The value of the flow from Ni to Nj along the arc Bij is de-
noted by fij and we have fij = -'fji
The conservation of liquid at a node Ni is expressed by the

equation

N N
(6) >:f.1j - )y =0 forall i tos,t,
k

)
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where .. > 0 and f,. > 0
- ki —

If a node Ns 18 a source node of strength v , we have

(7) zfsj = v ;
J

and for a sink node Nt of strength v , we have

(8) Zfit = v

We have now replaced a continuous domain by a discrete net-
work with line sources on I’ replaced by source nodes, and line
sinks by sink nodes. The strength of a source representing a short

line source Yy is determined by

(9) v =S'-g-§ds
Y

and similarly for a short line sink. In the following discussion, we
shall assume that there is only one source node and one sink node.
The reader familiar with network flow problems or problems
of operations research will suspect that this problem becomes a
minimum cost flow problem [ 9] or that of Hitchcock transportation
problem [12] with the sources as supplies and sinks as demands.

But this is not a standard minimum cost flow problem, as shown

later. For one thing, the network with infinity branch capacities
can have many minimum cost flow patterns in the network if the cost
is defined to be proportional to distance, where the solution of

Laplace's equation is known to be unique.



II. Network Fermulation:

To soive this questiun, we now turn to Dirchlet's principle
{see the book by Courant [5]) . The Dirchlet integral of a function

g defined on G 1is given by

. O e
(10, Dig] = ‘S‘L B Hig ) D dy

wher e g, c=nctes th2 partial derivative of g wi-h respect to
X , similarly fcr gy

Now we aucte from Courant [5]
Dirchlet's principie: Given a domain G whose boundary I con-
sists of Jordan curves. ILet g be a function continucus in G+ I |
piecewise smocth in G , and with finite Dirchlet integral D[g]
Consider the ciass cf a)! functicns ¢ continuous in G + I'
piecewise smooth in G , and having the same bcundary values 2s
g . Then the prcbism cof finding a function ¢ for which D[¢]
attains 2 minimuam d has a unique solution ¢ =u . This func.
tiorr. u 1¢ the sc.uticn of the boundary value problem fcr Vzu e
wicth the prescribed bourdary vaiue g on T

Dir-hlet's principle is certainly correct if in *hz beundary

value nreobie-m, the ncrmal derivative of g is prescribed instead

of ¢ The finite ana‘ogy of (10) for a discrete network is then
.« {(hy +hp)h ¢ = Op\°

(11) D[$] - = (Vi Do T (G I
2 Z P‘N

{The classicai approach is to differentiate {11, with respect to ¢>i

and soilve the simuitaneous linear equations thus obtaired !



1  we have

1 2
D[fij] = - z fij :
i,)

So the network problem becomes that of minimizing (12) sub-

For the case all h

(12) D[4)]

jected to the condition (6) (7) (8) . This is a mathematical program-
ming problem with linear constraints and non-linear objective
function (12) . With the solution space beirg convex and the objec-
tive function quadratic (see for example [16]), relative minimum in
the solution spacre implies absolute minimum. Furthermore, the
solution is unique.

Instead of solving the problem as a quadratic programming
one, we shall develop a network flow method. For convenience, we
assume that a scale system is chosen such that the strength of Ns
and of Nt are very large integers and '"one'" is the smallest posi-
tive constant.

Let us define the cost ciJ of shipping one unit of flow from

N. to N as
f. . if .. >0
(13) { ij ij =

This problem is now a minimum cost flow problem with the cost of
shipping along an arc depending on the direction and the amount of
flow in that arc.

We are interested in the flow pattern which satisfies the sup-
ply and demand conditions as defined by (6) (7) and (8) with the total

cost




(14) D=Vc. .1 =3¢
L i) ij
a minimum. Let us call this minimum cost flow pattern the
optimum flow pattern.
Clearly, in this optimum flow pattern, if a set of arcs

B.,,B .., B form a cycle, then we cannot have

O R VAR mi

f...f,,. ..., f_. all positive. Otherwise we can subtract from
11’712 mi

eacl arc the amount 6 = min (fil’fIZ’ e 'fmi) > 0 , with (6)

(7) and (8) still satisfied, but with the value of (14) reduced. This
is no surprise as we know from the continuous case, the solution
of Laplace's equation represents irrotational flow. This will be
called the condition of no circulation.

Consider now the case for which there is a cycle formed by
arcs in which we pick a node Ni and a node Nj . Let us con=-
sider the flows f,.,f., ,...,f . 1in the first path and the flows

il'"12 m)
fil' ’fl', TR 'fm'j in the second path. Note these arc flows

may be positive or negative. Then we must have

i) XTEILE

where the left side represents the marginal cost of shipping one
unit of flow along the first path, and the right-hand side represents
the marginal cost of shipping along the second path. If (15) is not
true, we can ship one unit along the cheaper path and go back on the
more expensive path. This will make (6) (7) and (8) all satisfied

but make (14) reduced.




We can now state the algorithm of constructing the optimum
flow pattern. This algorithm is similar to the algorithm used in
[3]. [9]) and [15] for constructing minimum cost flow where the
cost is the same as the lengith of the arc or as its negative.

Let us define the cost of a path from NS to Nt as the sum

of costs of arcs trave.iling along that direction.



Iil. The Method and 1ts Proof;

This algorithm car be described as follows. Assume that we
have sent 1 units of flow from NS to N 4 =01,... v}
p_:: Find the chea t path f N '
Ste Fin e pest p rom z to N, with the
costs cf arcs defined oy (13}. Let the path cost be . (i.e. . the
W th :
cost of ~he {1412} path).

Step 2: If C, =C

S—— ; 7C; 1 FO »gotoStep3. U C. . =C. .. =0

or Ci < Ci+l , send one unit of flow from Ns to Nt a.ong
the cheapest path. Redefine the costs of arcs on the path. Go back

to Step 1.

Step .i Let f)k be the arc flow from Nj to Nk , then

2 v

= = ¢ 7 _
¢J ¢k Zh *Jk\,

There exist many papers about the algorithm of finding the

)
!

cheapest path yor the shortest path). We shall on'y mention the
first paper on this subject by Ford [9], the later mecdification by
Dantzig [7], the matrix formulation by Berge [1], and the case of
many sources and many sinks to the technique by Gomory and Hu
[11] .

We shal: sav N1 covers Nj if there is a positive flow fij
from Ni to N? . Since there is no circulation in the flow pat-
tern, we can consider the set of all nodes to be partially ordered.
For the rnetwork with its nodes partially ordered by its flow pattern
we can also find the most expensive path (without cycies! from I\Is
to N {see {0 example [9]). For the optimum flow pattern, the

t

costs of the most expensive path and the cheapest path shouaid be



equal.

First we prove that this algorithm does give a flow pattern in
which costs of all flow paths are equai. Assume that there are two
paths Pl and PZ with the cost C (Pl) @ © (PZ) . In sending

the last unit flow along P, , we are not using the cheapest path P1

2
contradictory to the assumption that we always use the cheapest path.

Second, we prove that when costs of all paths are equal, the
optimum solution is obtained. Assume that there is an optimum
solution with the flow pattern different from that obtained by the algo-
rithm. Assume the path cost of the pattern obtained by the algorithm
:s C(h} and that of the optimum solution is C (()

Since i1t is necessary for an optimum solution to have all paths
the same cost, if the optimum solution is not obtained by this
algorithm. it must have all paths the same cost with C(0) < C(h) .
Consider in the stage of the algorithm for which we have shipped
v - 1 units of flows. Then we could send the last unit along a path
with cost C (0} and reduce the total cost. Since this, by assump-
tion, 18 not possible, this means the Zf?j in the path is greater
than Zf?j in that path and also for any part of the path. This
means f:lj > f?j . If this is true for all paths, since optimum so-
lution gives v units, then by (7) this means we have shipped more
than v units of flow, contradiction.

In order to speed up the convergence of this algorithm, lots of

rules can be given for sending flows from the source to the sink

when there are many arcs with fij =0 in the arcs. We shall not

=02



discuss such rules here.
The case of many sources of strength Vi and many sinks ot

strength v can be taken care of as usually done in network flows.

k
Also, an upper bound on the number of steps to solve this problem

can be given (sce[15]).

- 11 -



IV. Examples:

Consider Fig. 2 where it is assumed that f3 7 = 8 ,

_ 0¢ _ _
fll,lS =8 and B = 0 everywhere else, and h =1

According to the algorithm, we first send

Step l: The cheapest path from N3 to N15 costs zero.

(As f3’ 7 = f..,,11 = fll,lS = 0 initially.)

Step 2: Send one unit of flow along the path. Now

€3 7€ p=¢y,y5 =1 and cqg=c)y g=¢5 ="l

Step ). The cheapest path from N3 to le costs now Z

=0 :0 O,C 1

as €39 =1, “6,7 ' €6.10 10,11 7 11,15 =

Step 2. o * 0 < ¢, = 2 . Send one unit of flow along the arc

By 2+ By g Bgyo Blon 2™ Bp g - Now ¢y ,=2,
Capu=lecygs=e g g=laceg=l,c =l

By this algorithm, we will send two more units along the path
By 7 By v By g With cyo=4, ¢y =3 ,0¢)) 5=4
C7,6 =l Ct’),lO:l , C10,11:1 with C4=8

Then C, = 8 = CL3 #0 . We would go to Step 3 and obtain
the differences between functions.
_ e 8y _
For example, ¢7 - ¢’11 =21 +3. (I) =12

The fij are shown in Fig. 3

i
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Le* is comns.ler ar.other exampie. A special example such
that bv very simple consideration, no iteratior. or solution of

simuitaneocs equations 1s recessary.

Ccnsider Fig.4 where we assume that ali normal derivatives

o ¢ 9¢
are zero except that we have T T 14 at N1 and T - -14  at
N, . Due ic the symme:ry of *his configuration, we can only con=-

1

side: the pcints N. . N, Ny . N, . N and N¢

Assume the amcu=t of flow from 1’\[4 to N() 18 X

Ther from the :onsid=:a*ior. o; {f.ow at Nb we have f46 = f64' =9,

[#}]

Also, 145 ani !54,. .T¢ €¢tidi by symmetry. Furthermore,

145 + 154 = 146 + Y64 orterwise a redaction 1n cost can be a-

. T *o { -1 = . 1 = =2
chieved. Theretoce 45 " lgq = X Clearly f24 f46+f45 %3

and from symmetry and the equal path cost condition
3x

1
_ il s g \ - . . i3 ] - -
123 —f35 = -2-({24+‘45. Py Tris wil! make le'f23+f24'
3x L Tx . ¢ o N N
—~ t 2x = - - With B o 4 = £+ le’ = Tx We let x =2

and get the differences tetween all poirts as shown in Fig.5.



Fig. 4
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V. Discussion:

A few comments are in order.

1. This paper treats the Laplace's equatiorn from the point of
view of marthematica. programming. The potentials at nodes are
dual variab.cs 1o the cws 1n arcs, and they piay the same rcle as
prices in the "arg:3g+ ¢f :inear programming

2. For Poisson s equation Vzcb = vix,y: , the same inter -
pretation of irrctational! incompressible flow with sources and sinks
on the toundary and 1nside the region G can be givan. The

Dirchlet integral .C" should ke replaced by
) e 2 .
(‘ d +d + 2vix,y. 0 dx d
VS e y. ¢ b7

And the ccnditior 2) on the boundary should be rep.aced by

8¢ . . (Co. . ]
rﬁCS+S§V'X'Y'dXdy-O

Althcugh a1 variational formulation cf a genera!l elliptic
partial differential eguation of second order is possib’e. whether the
method rresentea he:¢ is applicable is unknowr.

3 For Dit h et € condition prescribted cn the boundary, we
have just the same number of unknowns as the nimber of equations
The same is true tor Neumann's condition it we 1ix ¢ at one point.
If we intrcdace {i] as variables, then we double the number of
unknowns The soiution will not be unique unless we use the
Dirchiet’s integra. as the objective function

4 The network ised in the theory of network fiows is quite

17 -



arbitrary Here the network is quite reguiar and there is no
capacity constraints on the arcs. A better numerical method can be
deveiorad specialiwy for this kind of network. Also the unimodular
property \see for example [4] and {14] ; of the incidence matrix
describing the retwcrk gives certain insight to the network flow
proklem  This may play an importar: role in further development
a‘ong the nne of the numerical methods.

5. When the grids are not aniform, we have

fps = ;.‘;?ﬁ%s‘? or
S5 N

iPS E ‘1_-'5:‘ j%f——f
S$"S T

This makes the tlcw ir. an arc not unique. But this can be taken care
of by introducirg a mu‘tipiier on the arc from NP to NS

This multip.ier deprnds oniy on the geometrical configuration of

the grid. Tte paper ky leweii [!4] on networks with gains can be
appiied Fight now, {ew papers have been written on networks with

gAiTLS .

- 18
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